Un team di ricercatori dell’Università di Roma Tor Vergata, insieme a un team dell’Università della California di Los Angeles, ha recentemente pubblicato su Nature Communications uno studio finalizzato a ricreare in laboratorio l’affascinante processo con cui le cellule formano o smantellano strutture molecolari in momenti precisi. La possibilità di imitare questo processo, progettando strutture su scala nanometrica, apre la strada a un’ampia gamma di applicazioni, dalla biomedicina alla diagnostica.
“Abbiamo pensato all’idea di ricreare in laboratorio reti di geni che, in base al momento della loro attivazione, possono formare o disassemblare materiali sintetici – commenta il professor Francesco Ricci, ordinario all’Università di Roma Tor Vergata, che aggiunge -. Abbiamo scelto di utilizzare dei ‘mattoncini’ di Dna sintetico che, mescolati in soluzione, interagiscono e formano strutture tubolari solo in presenza di una specifica sequenza di Rna. Un’altra sequenza di Rna, invece, può innescare il disassemblaggio di queste stesse strutture. Abbiamo quindi progettato dei geni sintetici per produrre queste sequenze di Rna in momenti precisi, così da controllare esattamente quando le strutture si formano o si distruggono”.
“Siamo riusciti a creare una rete di geni artificiale”, spiega la professoressa Elisa Franco, ordinario a UCLA, “che può controllare non solo la formazione o distruzione delle strutture, ma anche la loro composizione in momenti precisi. Ogni mattoncino è progettato per cambiare colore in base all’attivazione temporale dei diversi geni. In questo modo possiamo monitorare visivamente l’attivazione genica e osservare come queste strutture si evolvono nel tempo, riflettendo lo stato funzionale del sistema”.
“Il nostro approccio non si limita a strutture di Dna, ma può essere esteso ad altri materiali e sistemi – conclude la dottoressa Daniela Sorrentino, prima autrice dello studio, che ha trascorso gli ultimi mesi del suo dottorato nel laboratorio della professoressa Franco a UCLA -. Coordinando i segnali biochimici, possiamo assegnare funzioni diverse agli stessi componenti, creando materiali che evolvono spontaneamente nel tempo. Questo apre nuove strade alla biologia sintetica e a possibili applicazioni in medicina e biotecnologia”.
Redazione Nurse Times
Articoli correlati
- Il fumo può modificare i geni umani anche a 30 anni dall’ultima sigaretta. Lo studio
- Nobel per la Medicina 2024: scoperti i microRNA, la chiave per accendere e spegnere i geni nelle malattie
- Obesità, nuova terapia genica converte grassi cattivi in buoni
- Bimbi con sordità ereditaria causata da mutazioni nel gene Otof recuperano udito e parola grazie a terapia genica in entrambe le orecchie
Scopri come guadagnare pubblicando la tua tesi di laurea su NurseTimes
Il progetto NEXT si rinnova e diventa NEXT 2.0: pubblichiamo i questionari e le vostre tesi
Carica la tua tesi di laurea: tesi.nursetimes.org
Carica il tuo questionario: https://tesi.nursetimes.org/questionari
Lascia un commento